UNIVERSITY of HOUSTON

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Evidence accumulation and change rate inference in dynamic environments Joint lab meeting

> Adrian E. Radillo adrian@math.uh.edu

> > 08/17/17

Table of Contents

Perceptual decisions

- Modeling perceptual decisions
- Tasks

- Hidden Markov Models
- Evidence accumulation

3 Results

Click task

4 Conclusion

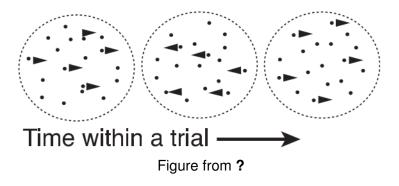
Athematical theory Results Conclusion Modeling perceptual decisions Tasks

Modeling perceptual decisions

ヘロン ヘアン ヘビン ヘビン

Athematical theory Results Conclusion Modeling perceptual decisions Tasks

Random dots reversal task



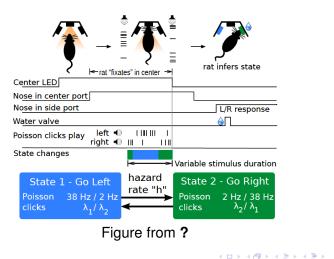
Mathematical theory Results Conclusion Modeling perceptual decisions Tasks

Hidden Markov Model

HMM1.png

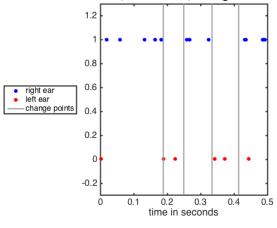
Mathematical theory Results Conclusion Modeling perceptual decisions Tasks

Click task



lathematical theory Results Conclusion Modeling perceptual decisions Tasks

Example trials



clicks; hazard= 5 Hz; low/high=2/38 Hz

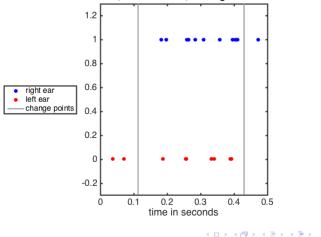
(문)(문)

< 🗇 ▶

æ

lathematical theory Results Conclusion Modeling perceptual decisions Tasks

Example trials



clicks; hazard= 5 Hz; low/high=14/26 Hz

Adrian E. Radillo Inference in Perceptual Decisions

æ

Hidden Markov Models Evidence accumulation

Evidence accumulation

• decision variable, $y_t = \ln P(H^+|\xi_{1:t})/P(H^-|\xi_{1:t})$, represents accrued evidence in favor of either choice.

ヘロン 人間 とくほ とくほ とう

Hidden Markov Models Evidence accumulation

Evidence accumulation

- decision variable, $y_t = \ln P(H^+|\xi_{1:t})/P(H^-|\xi_{1:t})$, represents accrued evidence in favor of either choice.
- decision rule:

ヘロン 人間 とくほ とくほ とう

Hidden Markov Models Evidence accumulation

Evidence accumulation

- decision variable, $y_t = \ln P(H^+|\xi_{1:t})/P(H^-|\xi_{1:t})$, represents accrued evidence in favor of either choice.
- decision rule:
 - free response: decide when threshold is reached, $|y_t| \ge \theta$

ヘロト 人間 とくほ とくほ とう

Hidden Markov Models Evidence accumulation

Evidence accumulation

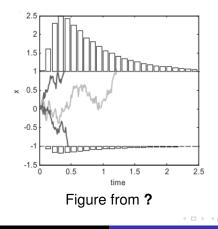
- decision variable, $y_t = \ln P(H^+|\xi_{1:t})/P(H^-|\xi_{1:t})$, represents accrued evidence in favor of either choice.
- decision rule:
 - free response: decide when threshold is reached, $|y_t| \ge \theta$
 - *interrogation*: decide at time T based on the sign of y_t

ヘロン 人間 とくほ とくほ とう

Hidden Markov Models Evidence accumulation

Evidence accumulation

Static environment: $H_t \equiv \text{const.} \Rightarrow \text{weight all observations}$ equally



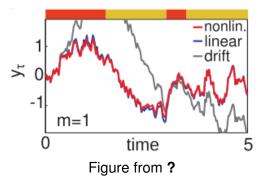
э

э

Hidden Markov Models Evidence accumulation

Evidence accumulation

Dynamic environment: $\{H_t\}$ is a Markov Chain \Rightarrow discount old evidence



(日)

Hidden Markov Models Evidence accumulation

How to deal with unknown hazard rate?

 \rightarrow track change point count a_t

ヘロン 人間 とくほ とくほ とう

Hidden Markov Models Evidence accumulation

How to deal with unknown hazard rate?

 \rightarrow track change point count a_t

Recursive update equation -?

$$P_n\left(H^{\pm},a\right) \propto P\left(\xi_n | H^{\pm}\right) \left[\left(1 - \hat{h}_{n-1}(a)\right) \cdot P_{n-1}\left(H^{\pm},a\right) \\ + \hat{h}_{n-1}(a-1) \cdot P_{n-1}\left(H^{\mp},a-1\right) \right]$$

ヘロア 人間 アメヨア 人口 ア

Hidden Markov Models Evidence accumulation

Continuous-time approximation

Set:
$$\bar{P}_t^{\pm} := \sum_a P_n(H^{\pm}, a)$$
 and $\bar{A}_t^{\pm} := \frac{1}{t+\beta} \sum_a (a+\alpha) P_n(H^{\pm}, a)$

Moment closure - ?

$$\begin{split} d\bar{P}_t^{\pm} &= \bar{P}_t^{\pm} \left[\left(g^{\pm}(t) + \frac{1}{2} \right) dt + dW^{\pm} \right] + \left[\bar{A}_t^{\mp} - \bar{A}_t^{\pm} \right] dt \\ d\bar{A}_t^{\pm} &= \bar{A}_t^{\pm} \left[\left(g^{\pm}(t) + \frac{1}{2} \right) dt + dW^{\pm} \right] \\ &+ \left(\bar{A}_t^{\mp} - \bar{A}_t^{\pm} \right) \left(\frac{1}{t+\beta} + \bar{A}_t^{\mp} + \bar{A}_t^{\pm} \right) dt \end{split}$$

ヘロト 人間 とくほとくほとう

æ

Hidden Markov Models Evidence accumulation

Click task

Evidence accumulation ODE - known *h*

$$\frac{dy_t}{dt} = \kappa \sum_{i \in I, j \in J} \left(\delta(t - t_R^j) - \delta(t - t_L^i) \right) - 2h \sinh(y_t)$$

イロト 不得 とくほ とくほとう

Hidden Markov Models Evidence accumulation

Click task

Evidence accumulation ODE - known *h*

$$\frac{dy_t}{dt} = \kappa \sum_{i \in I, j \in J} \left(\delta(t - t_R^j) - \delta(t - t_L^i) \right) - 2h \sinh(y_t)$$

イロト 不得 とくほ とくほとう

æ

Hidden Markov Models Evidence accumulation

But with unknown hazard rate?

• The state variable is a *2-state* continuous-time Markov Chain: $\{H_t\}_{t\geq 0}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Hidden Markov Models Evidence accumulation

But with unknown hazard rate?

- The state variable is a *2-state* continuous-time Markov Chain: $\{H_t\}_{t\geq 0}$
- One discretization approach is to partition the time line into N windows of width Δt

イロト イポト イヨト イヨト

Hidden Markov Models Evidence accumulation

But with unknown hazard rate?

- The state variable is a *2-state* continuous-time Markov Chain: $\{H_t\}_{t\geq 0}$
- One discretization approach is to partition the time line into N windows of width Δt
- In each Δt -bin, an observation is $\xi_t \in \{00, 01, 10, 11\}$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Hidden Markov Models Evidence accumulation

But with unknown hazard rate?

- The state variable is a *2-state* continuous-time Markov Chain: $\{H_t\}_{t\geq 0}$
- One discretization approach is to partition the time line into N windows of width Δt
- In each Δt -bin, an observation is $\xi_t \in \{00, 01, 10, 11\}$

Likelihoods summary

$$\begin{split} f^+_{\Delta t}(01) &= f^-_{\Delta t}(10) = \lambda_{\mathsf{high}} \Delta t + o(\Delta t) \\ f^+_{\Delta t}(10) &= f^-_{\Delta t}(01) = \lambda_{\mathsf{low}} \Delta t + o(\Delta t) \\ f^+_{\Delta t}(11) &= f^-_{\Delta t}(11) = o(\Delta t) \\ f^+_{\Delta t}(00) &= f^-_{\Delta t}(00) = 1 - (\lambda_{\mathsf{low}} + \lambda_{\mathsf{high}}) \Delta t + o(\Delta t) \end{split}$$

Hidden Markov Models Evidence accumulation

Revisit discrete-time update equation

Set
$$x_{t_n}^{\pm}(a) := \log P_n(H^{\pm}, a)$$
, and,

$$\hat{h}_n(a) := \frac{\alpha + a}{\beta + \Delta t \cdot n} = \frac{\alpha + a}{\beta + t_n}$$

ヘロン ヘアン ヘビン ヘビン

Hidden Markov Models Evidence accumulation

Revisit discrete-time update equation

Set
$$x_{t_n}^{\pm}(a) := \log P_n(H^{\pm}, a)$$
, and,
 $\hat{h}_n(a) := \frac{\alpha + a}{\beta + \Delta t \cdot n} = \frac{\alpha + a}{\beta + t_n}$

Update equation

$$\Delta x_{t_n}^{\pm}(a) = \log \frac{P(\xi_{1:n-1})}{P(\xi_{1:n})} + \log f_{\Delta t}^{\pm}(\xi_n) \cdots + \Delta t \cdot \hat{h}_{n-1}(a-1) e^{x_{t_{n-1}}^{\mp}(a-1) - x_{t_{n-1}}^{\pm}(a)} - \Delta t \cdot \hat{h}_{n-1}(a)$$

イロト 不得 とくほ とくほとう

Hidden Markov Models Evidence accumulation

Problematic continuum limit

When ξ_n corresponds to a single click (10,01), the limit,

$$\lim_{\Delta t \to 0} \left(\log \frac{P(\xi_{1:n-1})}{P(\xi_{1:n})} + \log f_{\Delta t}^{\pm}(\xi_n) \right),$$

is hard to take, since $f_{\Delta t}^{\pm}(\xi_n)$ scales linearly with Δt .

・ロト ・ 理 ト ・ ヨ ト ・

э.

Hidden Markov Models Evidence accumulation

Problematic continuum limit

When ξ_n corresponds to a single click (10,01), the limit,

$$\lim_{\Delta t \to 0} \left(\log \frac{P(\xi_{1:n-1})}{P(\xi_{1:n})} + \log f_{\Delta t}^{\pm}(\xi_n) \right),$$

is hard to take, since $f_{\Delta t}^{\pm}(\xi_n)$ scales linearly with Δt .

But we believe that the limit exists.

ヘロト 人間 とくほとく ほとう

Hidden Markov Models Evidence accumulation

Workaround

• Re-write our discrete time update equation as:

$$\Delta x_{t_n}^{\pm}(\gamma) = w(t_n) + F(t_n, \gamma, x_{t_{n-1}}^{\mp}(\gamma - 1) - x_{t_{n-1}}^{\pm}(\gamma))$$

イロト 不得 とくほと くほとう

Hidden Markov Models Evidence accumulation

Workaround

Re-write our discrete time update equation as:

$$\Delta x_{t_n}^{\pm}(\gamma) = w(t_n) + F(t_n, \gamma, x_{t_{n-1}}^{\mp}(\gamma - 1) - x_{t_{n-1}}^{\pm}(\gamma))$$

• Define an auxiliary process, with simplified update equation:

$$\Delta y_{t_n}^{\pm}(\gamma) = F(t_n, \gamma, y_{t_{n-1}}^{\mp}(\gamma - 1) - y_{t_{n-1}}^{\pm}(\gamma))$$

ヘロト ヘアト ヘビト ヘビト

Hidden Markov Models Evidence accumulation

Evidence accumulation in the click task

We proved that x_t may be recovered from y_t at any time, using a normalization argument.

ヘロト ヘアト ヘビト ヘビト

æ

Hidden Markov Models Evidence accumulation

Evidence accumulation in the click task

We proved that x_t may be recovered from y_t at any time, using a normalization argument.

Evidence accumulation for unknown h

$$\frac{dy^{\pm}(\gamma)}{dt} = \sum_{i \in I, j \in J} \left(C_{01}^{\pm} \delta_{t_{01}^j} + C_{10}^{\pm} \delta_{t_{10}^i} \right) + \frac{\gamma + \alpha - 1}{t + \beta} e^{y_t^{\mp}(\gamma - 1) - y_t^{\pm}(\gamma)} - \frac{\gamma + \alpha}{t + \beta}$$

くロト (過) (目) (日)

Click task

Research questions

• Are our generative models plausible in biology?

ヘロン ヘアン ヘビン ヘビン

Click task

Research questions

- Are our generative models plausible in biology?
- How do animals perform compared with our ideal-obs models?

ヘロト ヘアト ヘビト ヘビト

Click task

Research questions

- Are our generative models plausible in biology?
- How do animals perform compared with our ideal-obs models?
- What are the rates of convergence of our posteriors?

ヘロト 人間 ト ヘヨト ヘヨト

æ

Click task

Research questions

- Are our generative models plausible in biology?
- How do animals perform compared with our ideal-obs models?
- What are the rates of convergence of our posteriors?
- When do we encounter identifiability problems?

ヘロト 人間 ト ヘヨト ヘヨト

Click task

Research questions

- Are our generative models plausible in biology?
- How do animals perform compared with our ideal-obs models?
- What are the rates of convergence of our posteriors?
- When do we encounter identifiability problems?
- What algorithm does the brain implement?

ヘロト 人間 ト ヘヨト ヘヨト

Click task

Bibliography I

Adrian E. Radillo Inference in Perceptual Decisions

ヘロト 人間 とくほとくほとう