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INTRODUCTION

• When an environment is constantly changing and one can
only observe it partially, what is the best way to make a per-
ceptual decision?

• What do organisms do?

• We study formally one of the simplest settings in which an
observer needs to learn a hidden statistic from her environ-
ment.

SETTING

• A 2-state environment al-
ternates in time according
to a Markov process.
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• An observer makes sequential, noisy observations of the en-
vironment and must decide, at a fixed time, what the present
state is:

• An ideal observer must learn the change rates ε± (hazard rate).
• This paradigm applies to several well-known experimental

settings, such as a variant of the random dots task where the
direction of motion switches within trials [1].

AN IMPRACTICAL NORMATIVE MODEL

• The optimal on-line algorithm is costly in the discrete-time
setting when the rates are asymmetric.
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APPROXIMATE SYSTEM OF SMALLER DIMENSION

• We reduce the dimensionality of the continuous-time system
via moment closure:
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t

]
dt

dĀ±
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• The variables P̄±
t are marginals over the states.

• The change point count averages Ā±
t increase when evidence

for a change point is presented.

NEURAL NETWORKS

• Moment-closure equations
motivate a plastic, rate-
based neural network.

• We define two excitatory
neural population vari-
ables, u±t = P̄±

t , and the
synaptic weights between
them, w±

t = Ā±
t /u

±
t .

• A correlation-based plasticity
rule makes the weights con-
verge to the hazard rate.
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• For asymmetric change rates, the learning rule becomes:
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(H =Heaviside,Ct =amplitude-decay, θ = activity threshold)

• As one population dominates, only one weight decays until it
receives a pulse-increase at the change point.

CONCLUSION

• We derived [2] an optimal algorithm that solves the task in a
vast array of conditions:

2-state N-state
discrete continuous discrete continuous

symmetric 4 4 4 4

asymmetric 4 4 4 8

• The dimension of these models is generally too high.
• We implemented an approximation of the normative models

in a plastic rate-based neural network.

WHEN TO LEARN?

• We explore in which parameter regimes learning the change
rate is both possible and useful.

• Learning the rate is most helpful at intermediate values of
signal-to-noise ratio (SNR).
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