How to cope in a changing environment?

Adrian Radillo¹, Alan Veliz-Cuba², Krešimir Josić^{1,}, and Zachary Kilpatrick^{3,}

1. U. of Houston; 2. U. of Dayton; 3. U. of Colorado Boulder. 2. Equal contrib. adrian@math.uh.edu; https://math.uh.edu/~adrian/presentations.html

UNIVERSITY of HOUSTON

Summary

- ✤ In the dynamic clicks task (Piet, Hady & Brody, 2017) rats have shown the ability to discard old information in trials where the stimulus is volatile.
- * We develop an **ideal-observer** model that maximizes the expected reward on this task and makes explicit the **evidence-discounting** phenomenon.

Natural parameters

• We found numerical evidence that accuracy at time *T* remains constant as long as SNR(T) and h/S^2 are kept constant:

$$SNR(T) := \sqrt{T} \cdot S$$

$$\lambda_{high} - \lambda_{low}$$

- * A linear discounting model proves to be as efficient but less robust to parameter tuning.
- % It remains unclear what model the rats use and how we may distinguish them based on data.
- Debates and discussions are welcome!

accl $D \cdot \sqrt{\lambda_{\text{high}} + \lambda_{\text{low}}}$ So our system really is 2-0.4 0.2 0.0 dimensional acc 40 • If hT = const. the system be-0.9 comes 1-dimensional! 30 T=220 20 h = 1On the right, accuracy varies 0.7 as a function of *S*. Black lines 10 are the level curves. 0.5 20 10 30 40

Linear model is near-optimal...

Piet, Hady, & Brody, (2017). Rats optimally accumulate and discount evidence in a dynamic environment. bioRxiv. https://doi.org/10.1101/204248

KEY FEATURES OF THE STIMULUS

- Two coupled inhomogeneous Poisson processes (one per ear).
- ✤ Each intensity $\lambda^{R}(t), \lambda^{L}(t) \in {\lambda_{low}, \lambda_{high}}$ alternates stochastically within a trial according to the hazard rate *h*.

Ideal-observer model

 $y_t := \log \frac{P(\lambda_{high}(t) \text{ on the right } | \text{ observed streams})}{P(\lambda_{high}(t) \text{ on the left } | \text{ observed streams})}$

 $\frac{dy}{dt} = -2\gamma \cdot y + \log \frac{\lambda_{\text{high}}}{\lambda_{\text{low}}} \sum_{t_{\text{click}}} \delta_i^R - \delta_j^L; \quad y_0 = 0; \quad \gamma = \text{discounting rate}$

... but more sensitive to errors

When discounting parameter is misspecified, performance drops faster in the linear model

Discontinuous jumps at clicks, nonlinear decay in-between

Interrogate at time T and decide based on sign of yT

This model maximizes the expected reward on every trial

The inverse problem

Given the stimulus and decision data from our models, how well can we:

- identify the model?
- recover its parameters?

