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¢ Youtube video: dragonfly prey catching
https://youtu.be/XWROwMxepoM
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Some definitions for us

Perceptual decision-making

An animal engages in a behavior while having the possibility to

choose other behaviors, and this decision is based on sensory
evidence.
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Some definitions for us

Perceptual decision-making

An animal engages in a behavior while having the possibility to
choose other behaviors, and this decision is based on sensory
evidence.

Ideal-observer model

Mathematical model of perceptual decision-making that meets
some criteria of optimality.

Optimality

Maximize reward



We make a LOT of assumptions in the forward problem!
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The filtering framework

e Compute the posterior
P(HT[{&:0<t<T})

e If {H;} is Markov, we are in the
Hidden Markov Model framework

o Applications of the filtering
problem span a wide range of
Observed disciplines: Engineering,
Finance, Genetics and many
ft more!
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Dynamic clicks task

A & &
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) . B rat infers
l=-rat “fixates” in center >} .
final state
Center LED |
Nose in center port| |
Nose in side port L/R response
Water valve O
Poisson clicks play Mght=C 1l 1 i1l
left<d  pmnm |
State changes _ variable stimulus duration

fe—=1(0.5-25)

Piet, Hady, & Brody, (2017). Rats optimally accumulate and discount evidence in a dynamic environment. bioRxiv.
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Static environment

time ——

Towhigh (unknown to observer)
a
H_ ST | Log-likelihood ratio:
P(H(t) = H*
vs  §T) 1 = log LA = H o )
H- P(H(t) = H-[¢01)
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Static environment

time ——

Towhigh (unknown to observer)
a
H_ ST | Log-likelihood ratio:
P(H(t) = H*
vs  §T) 1 = log LA = H o )
H- P(H(t) = H-[¢01)

high rate @| | | | |

on left ear
P(H(t) = H* [¢t.t1an)
Then yiiat = yt + log P(H(t) = H=[§t.t+a9)
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Static environment

time ——

Towhigh (unknown to observer)
a
H_ ST | Log-likelihood ratio:
P(H(t) = H*
vs  §T) 1 = log LA = H o )
H- P(H(t) = H-[¢01)

high rate @ | | | |
on left ear
P(H(t) = H"[¢1,t+a1)

P(H(t) = H7|§[t,t+At])
If no clickin [t,t + A]: Yiint = Yt

Then ytiat = y: +log

Ahigh
)\/ow

If right (left) click in [t, t + A]: yirat = ¥t £ log
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Static environment

time ——
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H* Log-likelihood ratio:
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H- P(H(t) = H=|¢p0,17)
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on left ear

P(H(t) = H+\§[t,t+At])

P(H(t) = H7|§[t,t+At])
If no clickin [t,t + A]: Yiint = Yt

If right (left) click in [t, t + A]: yirat = ¥t £ log )\h'gh
low

Thendy,=r » ( (t—th) — 8(t — t[)) where « = log =% Ahigh

icljed low

Then ytiat = y: +log




0000

O B <= o4

>

o>




Introduction
0000

dyr =Y ( 5(t — th) 5(t—t[))—2hsinh(y,), K = log 2M9h
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Changing environment: SDE
time
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Signal at time t: Right clicks count - Left clicks count at time ¢
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Changing environment: Signal-to-noise ratio

Signal at time ¢: Right clicks count - Left clicks count at time ¢
E(Ng(t) — N.(1) Ahigh — Now
SNR(t) = =Vt =:Vt-S
)= Stdev(Na(®) — NU(T) ~ ¥ /Arigh T Now
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Changing environment: Signal-to-noise ratio

Signal at time ¢: Right clicks count - Left clicks count at time ¢
E(Ng(t) — N.(1) Ahigh — Now
SNR(t) = =Vt =Vt S
= Staev(N(t) ~ Ne(0) "/ ngh T Now
If SNR(T) and v'h/S are kept constant, then accuracy at time
T is constant.

accuracy

Ah@h
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Changing environment: Is nonlinearity needed?

dyr =Y ( 5(t — th) (t—t[)>—2sinh(yt)
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Linear model closely matches nonlinear model
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¢ In a changing environment (with our assumptions) the
optimal leak rate is nonlinear
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¢ Alinear leak reaches equivalent accuracy but is less robust
to parameter tuning
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Conclusion

¢ In a changing environment (with our assumptions) the
optimal leak rate is nonlinear

¢ Alinear leak reaches equivalent accuracy but is less robust
to parameter tuning

e Accuracy of our model in the dynamic clicks task seems to
only be governed by 2 parameters (instead of 4!)



e Learning h optimally is mathematically intractable — We
need approximate algorithms
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Future work

e Learning h optimally is mathematically intractable — We
need approximate algorithms

¢ We need to tackle the inverse problem: Given data, how do
we figure out what model was used?
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