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Perceptual decision making in real life

• Youtube video: dragonfly prey catching
https://youtu.be/XWROwMxepoM

https://youtu.be/XWROwMxepoM
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Some definitions for us

Perceptual decision-making

An animal engages in a behavior while having the possibility to
choose other behaviors, and this decision is based on sensory
evidence.

Ideal-observer model
Mathematical model of perceptual decision-making that meets
some criteria of optimality.

Optimality

Maximize reward
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Disclaimer

We make a LOT of assumptions in the forward problem!
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The filtering framework

Observed

Hidden

• Compute the posterior
P(HT |{ξt : 0 < t ≤ T})

• If {Ht} is Markov, we are in the
Hidden Markov Model framework

• Applications of the filtering
problem span a wide range of
disciplines: Engineering,
Finance, Genetics and many
more!
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Dynamic clicks task

Piet, Hady, & Brody, (2017). Rats optimally accumulate and discount evidence in a dynamic environment. bioRxiv.
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Static environment

vs

high rate
on left ear

high rate
on right ear

low-high (unknown to observer)
time

H+

H-

Then yt+∆t = yt + log
P(H(t) = H+|ξ[t ,t+∆t])

P(H(t) = H−|ξ[t ,t+∆t])
If no click in [t , t + ∆]: yt+∆t = yt

If right (left) click in [t , t + ∆]: yt+∆t = yt ± log
λhigh

λlow

Then dyt = κ
∑

i∈I,j∈J

(
δ(t − t j

R)− δ(t − t i
L)
)

, where κ = log
λhigh

λlow

Log-likelihood ratio:

yt := log
P(H(t) = H+|ξ[0,t])

P(H(t) = H−|ξ[0,t])
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Changing environment: SDE

h

high rate
on left ear
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on right ear

low-high high-low low-high
time

dyt = κ
∑

i∈I,j∈J

(
δ(t − t j

R)− δ(t − t i
L)
)
− 2h sinh(yt ), κ = log

λhigh

λlow
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Changing environment: Signal-to-noise ratio

Signal at time t : Right clicks count - Left clicks count at time t

SNR(t) =
E(NR(t)− NL(t))

Stdev(NR(t)− NL(t))
=
√

t
λhigh − λlow√
λhigh + λlow

=:
√

t · S

If SNR(T ) and
√

h/S are kept constant, then accuracy at time
T is constant.

T
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Changing environment: Is nonlinearity needed?

dyt = κ
∑

i∈I,j∈J

(
δ(t − t j

R)− δ(t − t i
L)
)
− 2 sinh(yt )

vs

dyt = κ
∑

i∈I,j∈J

(
δ(t − t j

R)− δ(t − t i
L)
)
− γyt , for some γ
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Linear model closely matches nonlinear model
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Linear model is not as robust
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Conclusion

• In a changing environment (with our assumptions) the
optimal leak rate is nonlinear

• A linear leak reaches equivalent accuracy but is less robust
to parameter tuning

• Accuracy of our model in the dynamic clicks task seems to
only be governed by 2 parameters (instead of 4!)
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Future work

• Learning h optimally is mathematically intractable→We
need approximate algorithms

• We need to tackle the inverse problem: Given data, how do
we figure out what model was used?
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