UNIVERSITY of HOUSTON

Integrating evidence in a changing environment INT workshop (Marseille)

Adrian E. Radillo adrian@math.uh.edu

https://math.uh.edu/~adrian/presentations.html

06 April 2018

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion

Acknowledgements

Alan Veliz-Cuba

Zachary P. Kilpatrick

And also

Joshua I. Gold

Alex Piet

Kresimir Josic

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つんぐ

• Youtube video: dragonfly prey catching https://youtu.be/XWROwMxepoM

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion

Some definitions for us

Perceptual decision-making

An animal engages in a behavior while having the possibility to choose *other* behaviors, and this decision is based on sensory evidence.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion

Some definitions for us

Perceptual decision-making

An animal engages in a behavior while having the possibility to choose *other* behaviors, and this decision is based on sensory evidence.

Ideal-observer model

Mathematical model of perceptual decision-making that meets some criteria of optimality.

うして 山田 マイボット ボット シックション

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion

Some definitions for us

Perceptual decision-making

An animal engages in a behavior while having the possibility to choose *other* behaviors, and this decision is based on sensory evidence.

Ideal-observer model

Mathematical model of perceptual decision-making that meets some criteria of optimality.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Optimality

Maximize reward

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion
		Disclaime	r		

We make a LOT of assumptions in the forward problem!

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion
		en e			

The filtering framework

The filtering framework

Compute the posterior
 P(*H*_T | {ξ_t : 0 < t ≤ T})

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

The filtering framework

- Compute the posterior
 P(*H*_T | {ξ_t : 0 < t ≤ T})
- If {*H*_t} is Markov, we are in the Hidden Markov Model framework

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

The filtering framework

- Compute the posterior
 P(*H*_T | {ξ_t : 0 < t ≤ T})
- If {*H*_t} is Markov, we are in the Hidden Markov Model framework
- Applications of the filtering problem span a wide range of disciplines: Engineering, Finance, Genetics and many more!

Piet, Hady, & Brody, (2017). Rats optimally accumulate and discount evidence in a dynamic environment. bioRxiv.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Introduction	Dynamic clicks task o	Ideal-observer model ●○	SNR o	Linear model	Conclusion
	~				

Static environment

・ロト ・ 戸 ト ・ 日 ト ・ 日 ト

1

Sac

0000	0	•0	0	00	00					
Introduction	Dynamic clicks task	Ideal-observer model	SNR	Linear model	Conclusion					

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction	Dynamic clicks task	Ideal-observer model	SNR	Linear model	Conclusion
0000	0	•0	0	00	00
	0	tatia apuirapr	mant		
	3	ialic environi	nent		

<ロ>

Introduction	Dynamic clicks task o	Ideal-observer model ●○	SNR o	Linear model	Conclusion
	S	static environr	nent		
	time ———				

Log-likelihood ratio: $y_t := \log \frac{P(H(t) = H^+ | \xi_{[0,t]})}{P(H(t) = H^- | \xi_{[0,t]})}$ VS high rate on left ear Then $y_{t+\Delta t} = y_t + \log \frac{P(H(t) = H^+ | \xi_{[t, t+\Delta t]})}{P(H(t) = H^- | \xi_{[t, t+\Delta t]})}$ If no click in $[t, t + \Delta]$: $y_{t+\Delta t} = y_t$ If right (left) click in $[t, t + \Delta]$: $y_{t+\Delta t} = y_t \pm \log \frac{\lambda_{high}}{\lambda_{low}}$ Then $dy_t = \kappa \sum \left(\delta(t - t_R^j) - \delta(t - t_L^i)\right)$, where $\kappa = \log \frac{2}{2}$ λ high i∈I.j∈J

◆ロ▶★@▶★注▶★注▶ 注:のへで、

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ □ ● の < @

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Changing environment: Signal-to-noise ratio

Signal at time t: Right clicks count - Left clicks count at time t

Changing environment: Signal-to-noise ratio

Signal at time *t*: Right clicks count - Left clicks count at time *t* $SNR(t) = \frac{E(N_R(t) - N_L(t))}{Stdev(N_R(t) - N_L(t))} = \sqrt{t} \frac{\lambda_{high} - \lambda_{low}}{\sqrt{\lambda_{high} + \lambda_{low}}} =: \sqrt{t} \cdot S$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

Changing environment: Signal-to-noise ratio

Signal at time *t*: Right clicks count - Left clicks count at time *t* $SNR(t) = \frac{E(N_R(t) - N_L(t))}{Stdev(N_R(t) - N_L(t))} = \sqrt{t} \frac{\lambda_{high} - \lambda_{low}}{\sqrt{\lambda_{high} + \lambda_{low}}} =: \sqrt{t} \cdot S$

If SNR(T) and \sqrt{h}/S are kept constant, then accuracy at time *T* is constant.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Dynamic clicks task	Ideal-observer model	SNR	Linear model	Conclusion
0000	0	00	0	•0	00

Changing environment: Is nonlinearity needed?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

$$dy_t = \kappa \sum_{i \in I, j \in J} \left(\delta(t - t_R^j) - \delta(t - t_L^j) \right) - 2\sinh(y_t)$$
vs

$$dy_t = \kappa \sum_{i \in I, j \in J} \left(\delta(t - t_R^j) - \delta(t - t_L^i) \right) - \gamma y_t, \quad \text{for some } \gamma$$

Introduction	Dynamic clicks task	Ideal-observer model	SNR	Linear model	Conclusion
0000	0	00	0	•0	00

Changing environment: Is nonlinearity needed?

$$dy_t = \kappa \sum_{i \in I, j \in J} \left(\delta(t - t_R^j) - \delta(t - t_L^i) \right) - 2\sinh(y_t)$$
vs

$$dy_t = \kappa \sum_{i \in I, j \in J} \left(\delta(t - t_R^j) - \delta(t - t_L^i) \right) - \gamma y_t, \quad ext{for some } \gamma$$

5900

Introduction	Dynamic clicks task o	ldeal-observer model	SNR o	Linear model ⊙●	Conclusion		
Line of model is not as vehicle							

Linear model is not as robust

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion ●○
		Conclusior	า		

In a changing environment (with our assumptions) the optimal leak rate is nonlinear

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Introduction	Dynamic clicks task	Ideal-observer model	SNR o	Linear model	Conclusion ●○
		Conclusior	า		

- In a changing environment (with our assumptions) the optimal leak rate is nonlinear
- A linear leak reaches equivalent accuracy but is less robust to parameter tuning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Introduction	Dynamic clicks task	Ideal-observer model	SNR o	Linear model	Conclusion ●○
		Conclusior	า		

- In a changing environment (with our assumptions) the optimal leak rate is nonlinear
- A linear leak reaches equivalent accuracy but is less robust to parameter tuning
- Accuracy of our model in the dynamic clicks task seems to only be governed by 2 parameters (instead of 4!)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion O
		Future wor	k		

• Learning *h* optimally is mathematically intractable \rightarrow We need approximate algorithms

Introduction	Dynamic clicks task o	Ideal-observer model	SNR o	Linear model	Conclusion
		Future worl	k		

- Learning *h* optimally is mathematically intractable \rightarrow We need approximate algorithms
- We need to tackle the *inverse problem*: Given data, how do we figure out what model was used?

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ □ ● の < @